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Abstract

We measure how display ads influence customers’ online searches for both the ad-
vertised brand and its competitors by randomizing the delivery of display ads to visitors
to Yahoo!’s front page, www.yahoo.com, and comparing subsequent activity on Yahoo!
Search. In three advertising campaigns featuring car insurance, a car, and a tablet
computer, display ads increased searches for the advertised brand by 30% to 45% and
increased searches for its competitors’ brands by up to 23%. Strikingly, the total num-
ber of incremental searches for the competitors’ brands was 2 to 8 times more than
that for the advertised brand. These spillovers from online display advertising to online
search create cost-complementarities that can influence the bidding behavior of adver-
tisers in search advertising. Further, an extension of Grossman and Shapiro (1984)
suggests that positive spillovers may reduce firms’ investment in advertising relative to
social-welfare-maximizing levels.
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1 Introduction

1.1 Overview

Online advertising encompasses a number of new advertising channels distinct from the

traditional offline channels such as print media and television. These new channels include

search, display, online classified ads, lead generation, online video, video games, and mobile

devices. The market for these channels has been growing throughout the past decade as

indicated by online advertising’s growing share of total media expenditure.1 Because so

much money is invested in these channels, it is important for both advertisers and online

publishers to understand their impact. This paper increases our understanding by studying

the impact of display advertising on online branded searches.

We hypothesize that display advertising increases searches for the advertised brand be-

cause it increases interest in the brand. Further, display advertising also increases interest

in the whole product category, resulting in more searches for the competitors’ brands. These

additional searches represent positive spillovers (i.e., externalities) from brand display ad-

vertising to competitors.

To test these hypotheses, we measure the search spillovers from display advertising by

exploiting exogenous variation generated by a natural experiment on Yahoo!’s front page

(www.yahoo.com).2 On certain days, Yahoo! sells the main display ad space on the front

page as an “ad split” in which two display ads alternate every second throughout the day.

As long as visiting the front page on an even or odd second is orthogonal to a visitor’s

response to the display ad, the ad split creates exogenous variation to identify the causal

effects of the display ad. To take advantage of this natural experiment, we recorded front

page visitors’ ad exposures and subsequent search behaviors on three ad split days when one

1From 2009 to 2010, US online advertising expenditure grew from 22.8 to 26.1 billion USD, a 14.5%
increase, while traditional media grew from 124.4 to 126.9 billion USD, a 2.0% increase (Mintel Reports
Database, 2010).

2Lewis (2010) uses this same variation to examine the impact of frequency on clicks and new account
sign-ups.
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of the advertisers was from a well-defined product category (the target ad) and the other

advertiser was from an unrelated category (the control ad). We compared the impact of

exposure to the target and control ads by examining users’ search behavior immediately

following visits to the front page. Focusing on the ten minutes following exposure, we find

that the display ads caused a 30 to 45% increase in searches for the advertised brand and a

1 to 6% increase in searches for any competitors’ brands. When analyzing the display ad’s

effect on searches by brands, we found as high as a 23% increase in searches for a competitor’s

brand. There was significant heterogeneity in the effect across competitors’ brands, perhaps

reflecting differences in competitive distance, but no competitor experienced a statistically

significant decrease in searches from the display ad. Therefore, display advertising increases

the likelihood of consumers to search for many brands in the product category.

We conducted several robustness checks of our results. We found that our results hold

when we limited our sample to only the period after the first impression and when we limited

our sample to users who only saw one impression. We also looked at the most statistically

impacted words, queries, and domains clicked. The results from these analyses mirror our

main results and also give more insight to the type of searches conducted. Specifically, we

found that display ads increased searches that navigate users to a brand’s website, searches

for informative sites about the whole product category, and searches relating to purchase

intent.

This paper makes several contributions to the advertising literature. This paper adds to

the numerous papers that measure the effects of display advertising. Most of these papers

concentrate on the effects of display advertising on clicks and survey response data while our

paper looks at the effects on online search. There are a growing number of papers that try

to measure the effect of advertising on consumers’ online searches, but our paper is the first

to use an experiment with clean exogenous variation to measure these effects. This paper

is also the first field experiment to measure the positive spillovers of brand advertising on

the whole product category. This finding is opposite to behavioral lab results and calls into
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question the assumption that advertising only affects the consideration of the advertised

product in many economic models of informative advertising.

Besides its interest to academics, these findings will also be of interest to advertisers.

Display advertisers should highlight their differential value knowing consumers will search for

other products in the category. When their competitors are conducting large-scale display

advertising campaigns, brands will want to develop a marketing communication strategy

responding to the ad because the ad will subsequently cause consumers to search for their

products. Assuming searches are meaningfully correlated with sales, display advertisers may

find our methodology of tracking the effects of display ads on branded search to measure ad

effectiveness useful, especially because measuring the effect of ads on sales is generally quite

difficult (Lewis and Rao, 2012). Finally, we show that search advertisers should consider

adjusting their bids in the search ad auction or at least have search ads when either they or

their competitors run display advertisements on heavily trafficked sites such as Yahoo!.

Publishers and regulators may also find these results worth considering. The heterogene-

ity of search lifts across competitors may provide one way to quantify relative competition

with the advertiser among competitor firms. We also find that an extension of Grossman and

Shapiro (1984) suggests that positive spillovers can lead to reduced advertising investment,

lower publisher revenues, and socially suboptimal advertising. However, more research is

required to understand the total economic implications of the positive spillovers on both the

publisher’s inventory and the advertising marketplace as a whole.

The paper is organized as follows: Section 2 reviews related literature. Section 3 details

the natural experiment, describes the display campaigns and search queries, and confirms

the randomization. Section 4 describes the empirical models, presents the main results, and

summarizes our robustness checks. Section 5 discusses the findings and concludes.
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1.2 Related Literature

Our hypothesis comes from research suggesting that ads motivate consumers to learn and,

hence, search for more information about the product category.3 In a theoretical model, May-

zlin and Shin (2011) show that there exists a separating equilibrium where a high quality

firm would choose an advertisement devoid of any attribute information in order to invite

the consumer to search. In laboratory settings, Swasy and Rethans (1986) found that adver-

tising for new products created more curiosity among consumers with high product category

knowledge. Menon and Soman (2002) show that curiosity-inducing advertising increased

time spent and attention on gathering information but did not increase the number of clicks

on links for more information.

Our key findings show that some advertisers’ brand advertising creates significant in-

creases in searches for competitors’ brands, but past lab research, perhaps limited by sample

sizes or appropriate field outcomes, suggests that there should be little to no increase. Alba

and Chattopadhyay (1985) found that cueing a brand inhibited recall of other brands in

the same product category and brands in related categories. Nedungadi (1990) found that

priming of a minor brand in a less accessible subcategory significantly increases the retrieval

and consideration of the major brand in the same category while priming of a major brand

did not significantly increase the recall or consideration of any other brands. In contrast, we

find that brand advertising increases searches for competitor brands with both higher and

lower market share than that of the advertiser.

There is a growing academic literature studying the effectiveness of display advertising.

Recent papers have mostly focused on the effects from frequency and targeting on click-

through rates and survey response data. Drèze and Hussherr (2003) found results from eye

tracking data that suggest users avoided looking at display ads, but they found that multiple

deliveries of a display ad to the same user increased unaided brand recall. Also looking at

the effects of ad frequency, Lewis (2010) found, using the same exogenous variation as this

3The information provided by display advertising is limited by the nature of the medium.
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paper, that significantly increasing the frequency of an advertiser’s display ads on Yahoo!’s

front page generally only modestly diminished the click-through rate. Goldfarb and Tucker

(2011b) studied how the EU regulation that limited the targeting capabilities of advertisers

reduced display advertising’s positive effect on surveyed purchase intent while Goldfarb and

Tucker (2011a) showed that both matching an ad to the website content and increasing its

obtrusiveness increased surveyed purchase intent.

The only empirical study that we know of that tries to measure the effects of advertising

on online search behavior using field data is by Joo et al. (2011). They show that there

is a significant correlation between television advertising for financial services brands and

consumers’ tendencies to search online for these brands. We add to this literature by using

a natural experiment and show that display advertising causes consumers to search online

for both the advertised brand and other brands in the same product category.

2 Experimental Design and Data Overview

2.1 The Experiment and Data Collection

The empirical approach leverages a natural experiment with display ads on Yahoo!’s front

page, www.yahoo.com. Yahoo! participates as a publisher in both the search and display

advertising markets. In 2010, approximately 34% of Yahoo’s revenue came from display

while 50% come from search.4 The front page is one of its most heavily trafficked sites.

Approximately 40 million unique users visit the front page on any given day. Figure 1 is a

screenshot of the front page and shows a Progressive Insurance display ad from our study.

We collected anonymized data on users’ ad exposures on the front page and subsequent

search behaviors.

On any given day, an advertiser can purchase a display ad on Yahoo!’s front page for

the whole day (i.e., all impressions) or purchase a spot in an ad split (i.e., half of the day’s

4Yahoo! 10-K FY 2010.
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impressions). If an advertiser chooses to be part of a split, its ad is shown to visitors who

arrive at Yahoo!’s front page on, for example, any odd second, while another advertiser’s

ad is shown in the same position on the webpage to those who arrive at the site on any

even second. As a result, each user has a 50% chance of being exposed to either ad in the

split during each page visit. In addition, the number of impressions of a given ad delivered

to a user will be distributed binomial(v, .5) where v is the total number visits to the front

page. If there is no systematic difference between odd and even second visits then the ad

shown at each impression and the percentage of the total number of impressions delivered to

a user are exogenous–essentially random.5 Therefore, front page ad splits provide a natural

experiment with which we can study the effects of advertising.

Each ad impression defines a treatment or control group event. Specifically, we associate

all behavior immediately following the delivery of the target ad with our test group and all

behavior following the delivery of the other split ad with our control (baseline) group. A

period begins upon the delivery of an impression and ends either when another impression

is delivered to the same user or after ten minutes have elapsed, whichever comes first.6 Ten

minutes should be long enough to allow for users to perform enough activities after the

delivery of an impression but short enough to avoid misattributing activities to the delivered

impression.7

We recorded each anonymous user’s searches on Yahoo! during each ten-minute period

after an impression was delivered. We focused on searches related to the brands of the

advertised products and their competitors’ brands. A search was defined as related to the

5We refer the interested reader to Lewis (2010) who discusses this experiment and its virtues and failings
in greater depth.

6Only 18% of impressions were followed by another impression from the study within ten minutes.
7Examining behavior during the ten minutes following a user’s exposure to a display ad impression yielded

the most statistically powerful results in independent tests. While we may underestimate the total number
of searches caused by the display ads, we intentionally make this tradeoff to focus on the time window when
the signal to noise ratio is sufficiently large to make meaningful statistical measurements. The ten-minute
limit still captures a majority of all exposed users’ searches due to the one-day nature of the campaign.
Multiday campaigns can experience greater gains in statistical power from imposing the ten-minute window,
motivating its use in this study.
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advertiser’s or a competitor’s brand if it included the name of the brand or its product.8

Finally, we removed from our data the 0.02% of users who visited the front page more

than 100 times. Such extreme behavior is more characteristic of webcrawlers (i.e., computer

programs) than humans.9 Less than one percent of users visited the front page more than

30 times.

2.2 Advertising Campaigns and Search Keywords

The three display advertising campaigns were for Progressive Car Insurance, the Acura

TSX sports wagon, and the Samsung Galaxy Tab. Each campaign was part of a front page

split with a control display ad unrelated to the advertised product category. The Progressive

campaign was part of a split with an ad for a TV show; the Acura TSX campaign was part

of a split with an ad for an electronic retail store; and the Samsung Galaxy Tab campaign

was part of a split with an ad for an action movie. Table 1 shows the creatives for each

display ad campaign and the corresponding control display ads in their splits.

To capture as much of the complementarities between display and search advertising, we

wanted to consider all the brands in the advertised product category or market as search

keywords. To identify other category brands for the Progressive Auto Insurance campaign,

we used a December 2009 Mintel Marketing Intelligence research report about the Auto

Insurance Industry.10 In total, we found 14 brands other than Progressive Auto Insurance.11

These competitors include all the top 10 underwriters, which make up over 67% of premiums

written in 2008 (Mintel Reports Database, 2009).

8We acknowledge that this method will incorrectly categorize some searches as searches for the brand’s
product, but instead, they are really searches for topics related to the brand like queries for financial state-
ments for the brand. After scanning some of the categorized searches, we believe that most if not all of the
categorized searches are searches for the brands’ products.

9The maximum number of visits to the front page by a unique user in a single day was around 4, 000,
averaging once every 15 seconds during waking hours.

10The report contains the results from a survey asking adults 18 and over whose households own an
insured vehicle about their preferred auto insurance company. We took those that were named as other
brands in the market.

11The brands other than Progressive are State Farm, Allstate, Geico, Farmer’s Insurance, Nationwide
Insurance, Liberty Mutual, USAA, AIG, American Family Insurance, 21st Century Insurance, Travelers
Insurance, Hartford AARP, Erie Insurance, and Safeco.
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For competitor-branded search keywords for the Acura campaign, we used all makes listed

on Autobytel.com, a consumer website about passenger vehicles.12 In total, we identified 36

brands other than Acura that range from standard brands such as Ford to sports and luxury

brands such as Porsche.13

Finding the category brands for the Samsung Galaxy Tab campaign was more difficult.

During June 2011, the month of the ad split, the tablet PC market was fairly new and

dominated by one product, Apple’s iPad; however, new products were entering the market

on a monthly basis. To summarize these options and upcoming releases, CNET, a media site

about technology products, wrote an article titled “CNET looks at current and upcoming

tablets” (Franklin, 2011). In this article, they listed all upcoming and currently available

tablet PCs from March to the end of 2011.14 From the article, we used the 15 products and

brands listed as potential search keywords.15

For the three advertising campaigns, we have identified many brands in each advertised

markets, but we might have ignored some close substitutes. For example, the Samsung

Galaxy Tab also competes with e-readers, smartphones, netbooks, and ultra-portable lap-

tops. By ignoring these product market substitutes, our estimates are more conservative and

underestimate the magnitude of the possible search spillovers.

2.3 Data Summary

Table 2 summarizes the data. There were 38-41 million unique users who visited the front

page 161-171 million times each day of the splits. As expected by the natural randomization

created by the ad split, the target ad was delivered on 50% of those visits while the control

12Autobytel (2011) retrieved June 30, 2011.
13The brands other than Acura are Audi, BMW, Cadillac, Chevrolet, Dodge, Ford, GMC, Honda,

Hyundai, Infiniti, Jeep, Kia, Lexus, Lincoln, Mazda, Mercedes, Mini, Mitsubishi, Nissan, Scion, Subaru,
Suzuki, Toyota, Volkswagen, Volvo, Buick, Chrysler, Fiat, Jaguar, Land Rover, Porsche, Rolls Royce, Saab,
Smart, and Tesla.

14Retrieved July 29, 2011.
15The brands other than Samsung’s Galaxy Tab are Dell Streak, Motorola Xoom, HTC, Blackberry

Playbook, Asus, Acer Iconia, Apple iPad, Amazon Tablet, Sony, G-Slate, Toshiba, Vizio, Viewsonic, and
Micro Cruz.
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ad was delivered on the other 50%.

A small fraction of users searched for any category brands on the day of the campaign.

Only 0.06% of front page visitors searched for the advertised brands and its competitors on

the day of the Progressive Auto Insurance ad campaign, 0.8% searched on the day of the

Acura TSX ad campaign, and 0.04% searched on the day of the Samsung’s Galaxy Tab ad

campaign. In spite of these small percentages, the scale of the Yahoo! front page still yielded

a large number of users who search: 15, 545, 331, 047, and 24, 258 users, respectively, for the

three campaigns.

Most visitors to Yahoo!’s front page in a day return at least once that same day. Figure 2

shows a histogram of the total number of users visiting for each day of the three campaigns;

the histogram is heavily skewed right with the mean visits in a day exceeding the median of

two. On average, a user visits the front page four times during the day and, as a result, sees

four front page display ad impressions, randomly split between the target and control ads.

Figure 3 shows the distribution of the number of target ad exposures delivered to each

user for the three campaigns. This distribution is also heavily skewed right. Given N , the

number of front page visits by a user, the number of target ads shown to a user should be

distributed binomial(N , p = 0.5). Figure 4 compares four histograms: three showing the

empirical distribution of target ad exposures for users who visited the front page ten times

during the three campaigns and, for comparison, one plotting the binomial distribution for

N = 10 and p = 0.5. The similarity of the sample distributions to the theoretical distribution

confirms the impression-level randomization mechanism used by the ad splits.

3 Empirical Analysis and Results

3.1 Econometric Model

We measured the impact of display advertising on branded search from the display im-

pression and search query data we collected for each advertiser’s campaign. Our analysis
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compares the search probability for a brand between our test and control groups. To measure

the difference in probabilities, we estimated the linear probability model

Searchijt = αj + βjADit + εijt (1)

using ordinary least squares (OLS) for each brand j on the data collected from the ad

campaign relating to brand j’s product category. Searchijt is an indicator variable equal

to one if user i searched for brand j during period t and zero otherwise. ADit is another

indicator variable equal to one if the target ad was delivered to user i during period t. εijt

is the error term.

The estimated βj measures the average causal effect of front page display advertising

exposure on the tendency to search for brand j within the ten-minute time window. This

estimate would be biased if ADit were correlated with εijt, but this would require users to

be systematically more or less likely to search when they visit the front page on an even

second relative to an odd second. On the other hand, we might underestimate the total

impact by not considering all searches caused by the display ad. For example, if a user’s first

exposure continues to influence their searching behavior all day long, and not just during the

limited ten-minute window, we will underestimate the impact of the ad on search behavior

by ignoring later searches caused by the ads and misattributing some of those searches to

the baseline search behavior .

We estimated standard errors by clustering the errors on the user level to account for

random effects and any autocorrelation between periods. For example, a user who sees a

headline of interest on the front page might spend an entire day researching that topic, and

therefore, may be less prone to search in the advertised category (or any category).

We are interested in understanding the impact of a full day of advertising on Yahoo!’s

Front Page, www.yahoo.com, not the impact of the split. We do this for expositional sim-

plicity. All of our main estimates below present the results for the counterfactual, “What
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would the ad effect have been had the advertiser purchased the full day of advertising?”

We compute these estimates simply by multiplying the estimates by the total number of

impressions shown from both advertisers (i.e., twice the impressions shown in an ad split).

We pause to point out that wearing out of the effects, which could complicate this simplified

counterfactual computation, are found to be of modest importance.16 We focus on the con-

ceptually simpler target versus control comparison: “What did people search for after seeing

one display ad rather than the other?”

3.2 Advertiser and Competitor Search Lifts

Table 3 contains the results from estimating equation (1) for each of the three ad cam-

paigns. We have transformed the linear probability model’s probability estimates to report

the display ad’s impact in terms of number of searches for the advertised brand and for

any of its competitors’ brands. We also separately report estimated effects for the competi-

tors’ brands with the four highest t-statistics. The baseline estimates, representing the total

number of searches by all visitors that would have occurred if only the control display ad

were delivered, are the estimated intercepts multiplied by the total number of impressions

delivered on that day. The second column of estimates shows the estimated number of incre-

mental searches over the baseline from showing the target display, computed by multiplying

the estimated lifts in the propensity to search with the total number of impressions deliv-

ered. Both t-statistics based on the OLS standard errors and clustered standard errors are

reported by each of the estimates.

In all three campaigns, we found a statistically significant lift in searches for the advertised

brand from its display ad (p < 0.001 for all three campaigns). Both Acura and Galaxy Tab ad

campaigns caused a 44% lift in searches for their brands while the Progressive ad campaign

only caused a 28% lift in searches for its brand. If the advertised brands decided to run their

campaigns for the full day then Samsung would have had 424 more searches, Acura would

16The frequency model’s results are available in an earlier draft of this paper. They do not show significant
effects of decreasing marginal returns, but the confidence intervals grow in the number of impressions.
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have had 1, 555 more searches, and Progressive would have had 1, 135 more searches relative

to not advertising.

Not only did we find search lifts for the advertised brand but also for its competitors. Two

of the three campaigns caused a significant increase in searches for competitors. The Samsung

Galaxy Tab ad campaign caused a 6.0% increase in searches for any of its competitors. Most

of this increase was due to searches for Apple’s iPad. If the Galaxy Tab ad campaign were

run for the full day then it would have produced 857 more searches for the iPad. This

number is about two times larger than that for the Galaxy Tab, 424. In essence, at least for

driving online searches, the Galaxy Tab ad campaign was more of an advertisement for the

iPad than it was for the Galaxy Tab. The other product that had a statistically significant

increase in searches from the Galaxy Tab display ad was the Motorola Xoom. Though not

as big of an increase as that of the iPad in absolute terms, the percentage lift for Xoom

searches was 22.8%.

Acura’s ad campaign also caused an increase in searches for its competitors, though the

estimated effect was smaller at 3.0%. Note that the relative sizes of the baselines matter–with

36 competitors to account for, some of which are much larger than Acura–the total search

impact for all the competitors combined, in terms of number of searches, is approximately 7.7

times larger than for the advertiser, Acura. Again, we see that advertising produced more

searches for its competitors than for its own brand. The brands with the largest increase in

absolute terms are Volkswagen, Hyundai, Lexus, and Volvo with effects ranging from 478 to

894 more searches.

In contrast, the Progressive Auto Insurance ad campaign did not noticeably increase

searches for its competitors. A possible reason for this is that auto insurers’ websites also

quote their competitors’ prices. Both the creative in the campaign and Progressive’s website

suggest that Progressive will present users with prices from its competitors. Therefore, users

do not need to incur the cost of searching for information about competitors if they obtain

that information from the advertised brand.
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These differences in search behavior are for Yahoo! Search only. We would expect users

to perform any incremental searches using their preferred search engine: whether visiting a

search engine’s website, typing in the search box in their web browser, or using a browser

toolbar. Holding the search channel constant, we would expect to find a similar relative

composition of findings across search methods.

3.3 Robustness Checks

We conducted two sets of robustness checks of our analysis. In the first set, we re-

estimated display advertising’s effects on searches but limited the sample in one analysis to

only the period after the first impression and limited another analysis to those users who

only saw one impression. By limiting the analysis to a user’s first impression, the issues

about misattributing searches to subsequent ad impressions and correlated error terms are

no longer a concern. Also, any difference between the estimates from the full sample and

those from the limited samples would suggest that frequency might moderate the effect.

Table 4 contains the results from the full sample and the limited samples. The point

estimates from the limited samples have the same sign and tell the same story as those from

the full sample, but they are generally smaller. However, they are not significantly different

at the 5% level. That said, we cannot conclude that effect of the first impression is not

different from the effects of subsequent impressions because the powers of these tests are

low.17 We greatly reduce the sample size from 171 million to 40 million when limiting to

first impressions and to 13 million when limiting to those who saw only one impression.

In the second set of robustness checks, we looked at the most statistically impacted

words, queries, and domains clicked. The purpose of these robustness checks is to ensure

that these extra searches for the brands are related to product searches and not to other

type of searches such as the financial news about the brand. To find the most statistically

impacted words, queries, and domains clicked, we calculated the frequency of those outcomes

17First impressions (no pun intended), however, do generally occur earlier in the day and users who see
only one impression may not be representative of the general user base.
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under the control ads and under the test ads and looked at those with differences with the

highest t-statistics.18

The results of this robustness check corroborate our brand analysis while providing deeper

insights. As expected, the display ad caused an increase in clicking on the brands’ domains

from both organic and sponsored links. For example, the Acura display ad increased click-

ing on links to Acura.com, VW.com, Hyundai.com, Lexus.com, and Volvocars.com, and the

Galaxy Tab’s display ad increased clicking on links to store.apple.com. The t-statistics for

these increases were greater than 3. Interestingly, the display ad also statistically significantly

increased clicks on search links for trade, review, and distribution websites. For example,

Acura’s display ad increased clicks for Motortrend.com, Edmunds.com, and autobytel.com,

and Galaxy Tab’s display ad increased clicks for reviews.cnet.com, besttablet2011.com, and

bestbuy.com. The increase in clicks for these “market information” websites speaks to the

literature that suggest advertising invites and motivates consumers to search for more infor-

mation (Mayzlin and Shin, 2011). This is true not only for information about the advertised

brand but also about the whole product market.

We also looked at the most positively impacted queries and words. For the Progressive

ad, the most impacted query was “progressive flo.” Flo is the name of the woman in the

Progressive ad. This implies that a large portion of the estimated search lift for Progressive

was searches intended for Flo and perhaps not for Progressive Auto Insurance. When looking

at the most impacted search words and queries due to the Acura ad, we find that the Acura

ad increased searches for specific car models besides just the make of the cars. For example,

the Acura ad statistically significantly increased searches for Hyundai Sonata, Ford Flex,

Nissan Optima, and Honda Crosstour. Overall, these checks echo the same story about

positive spillovers suggested by our previous results.

18We use a high level of statistical significance in order to reduce the risk of false positives. For example,
for the Acura ad, we analyzed 48,656 subdomains that received at least 40 clicks in our sample; only 2 of the
top 25 p-value-ranked subdomains were not obviously car-related and were considered false positives. This
observation combined with the fact that car-related searches account for a small share of all online search
behavior lead us to expect car-related false positives to have no meaningful effect on our findings.
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4 Discussion and Conclusion

4.1 Display and Search Advertising Complementarities

Even though we do not measure the revenue generated by these spillovers, the spillovers

do create complementarities between display and search advertising through the cost of

advertising. This is due to the generalized second price auction. Appendix A presents

a simple model and derives necessary conditions for display and search advertising to be

complements. Our findings mainly depend on two necessary conditions. Our empirical

finding of display ads increasing search volume satisfies one condition, and another condition

is that a search ad’s cost-per-click (CPC) is weakly increasing in the desired click-through

rate (CTR). The second condition is a property of search ad auctions. In practice, ads

positioned at the top of the page, where click-through rates are higher, cost more per click

than ads at the bottom of the page.

The intuition regarding the complementarities of display and search ads is simple: if

display advertising increases the number of searches, then holding revenues constant by

holding the number of clicks constant permits an advertiser to bid for a lower CTR. Lowering

the CPC directly translates into a larger profit margin for each search click; hence, display

and search ads are complements. A very similar calculation and logic applies to a firm’s

display ads and the competitors’ search ads because the same opportunity to reduce the

CPC applies as much to the competitors as to the display-advertising firm. This larger

profit margin for competitors’ search ads implies that display and search ads are strategic

complements.

To illustrate our point, we use the bids on February 12, 2012 for the branded keywords

of the three advertisers and calculated the CPC for each position. Figure 5 shows the

relationship between CPC and CTR on the search result pages for the three advertised

brands: Progressive, Acura, and Samsung. Due to confidentiality, CPCs are in terms of

the percentage of the top position, position 1. CTRs for the four search ad positions are
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averages of CTRs from a sample of queries with at least four ads that are found in Reiley

et al. (2010). They are also expressed in terms of percentage of the top position. For an

example of the cost savings, let’s consider searches for Acura. If an advertiser decided to

move from position 2 to position 3, the advertiser lowers its CPC by 27%, but loses 30%

clicks by moving to a lower CTR position. However, the 44% increase in searches due to

Acura’s display ad on the front page will make up the loss in clicks from the lower CTR.

Therefore, the advertiser in position 2 can save 27% per click for the same number of clicks

by moving down to position 3 when Acura has a display ad on Yahoo!’s front page.

Beyond the complementarities discussed above, there might be other complementarities

and strategic complementarities about which we can only speculate. For example, if the ad-

vertiser chooses to advertise on its search result page, the display advertiser can reinforce the

marketing message, provide more product information, and advertise distribution channels.

In regards to strategic complements, Burke and Srull (1988) show that consumers’ recall of

an ad’s brand information is hindered by exposure to a competitor’s ad. So, if a display ad

causes users to search, a prominently displayed search ad for a competitor can attenuate the

recall of the display advertiser’s marketing message.

Switching our focus from the advertiser to the publisher, our results suggest that there

might be revenue spillovers from the display advertising market to the search advertising

market. Economides and Salop (1992) show, in the context of imperfect competition, that

deadweight loss is smaller in a market where a single firm sells two complementary products

relative to the market where the two products are sold by two separate firms. If the value

of these spillovers is economically significant, this model suggests that allowing publishers

to participate in both display and search advertising markets could reduce deadweight loss.

Given the data we have, we are not able to accurately measure the magnitude of these

spillovers between display and search advertising.19 Answering this question is beyond the

19A previous version of this paper attempted to quantify the value of these spillovers and found them
to be somewhat modest–worth perhaps single-digit percentage points relative to the value of the display
advertising cost. However, several weaknesses of that analysis included considering only a very restricted set
of brand-related queries and not having the exact incremental revenue from the incremental search clicks.
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scope of this paper and is an important area for future research.

4.2 Advertising Investment and Competitive Spillovers

Our results show that there are positive spillovers of advertising to other competitors,

especially in awareness. Most theoretical models on informative advertising usually assume

that advertising only increases the awareness of the advertised product (e.g. Butters (1977)

and Grossman and Shapiro (1984)), and our results conflict with this assumption. Using the

Grossman and Shapiro (1984) model and allowing for advertising spillovers, we show in Ap-

pendix B that introducing symmetric positive spillovers in advertising decreases investment

in advertising (see Figure 6). Intuitively, every additional unit of advertising creates more

price competition in the product market when there are spillovers than when there are not.

In regards to the socially optimal level of advertising, the original Grossman and Shapiro

(1984) model predicts that there can be either an underinvestment or overinvestment in

advertising depending on the parameters of the model. In our extension, if firms are over-

investing, positive spillovers shift advertising investment levels toward the socially optimal

level. In contrast, spillovers make underinvestment worse.

Kaiser et al. (2005) document several marketing programs that attempted to reduce such

advertising underinvestment for agricultural commodities such as “California Raisins.” In

discussing their work, Varian (2006) states,

[Profitable commodity advertising] programs can be difficult to maintain. The

problem lies in aligning incentives. The producer of a branded product pays all

the costs and reaps all the benefits of its advertising spending, leading it to a

carefully considered decision about how much to spend.

By contrast, the benefits and costs of commodity advertising are spread un-

equally among many producers, making it tough to reach a collective decision

about marketing levels.
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Our measurements and model of positive spillovers suggest that brand advertisers may not,

in fact, reap all of the benefits of their advertising. As a result, even the significant returns to

the commodity advertising programs documented in Kaiser et al. (2005) may still be socially

suboptimal because advertisements for branded “California Raisins” may have resulted in

positive spillovers to non-California raisin producers or even other related products. Future

research should explore the consequences of spillovers in awareness on advertising investment

more broadly to understand its adverse welfare consequences and seek to develop mechanisms

to mitigate this market failure.

4.3 Conclusion

Measuring the spillovers of online display advertising on online search is becoming in-

creasingly important as online advertising continues to grow. We believe these spillover

results offer a fascinating view into the effects of advertising on customer behavior. Will re-

searchers find proportional effects on sales and profits? Are there similar spillovers from all

other forms of advertising media? Are the spillovers illustrated in online search a proxy for

customer search behavior more generally? Are online search queries a proportional represen-

tation of causal attention induced by the ad? While these questions may sound esoteric, an

increasing number of day-to-day activities are assisted by online search engines paired with

other digital technologies such as smart phones and tablet computers. Online search is now

in your pocket to help you obtain information about who you know, where you want to go,

and what you want to buy. We hope to see future research explore these and other related

questions that will help advertisers and publishers improve the effectiveness of advertising

and the efficiency of advertising marketplaces.
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Appendix A: Complements and Strategic Complements

Consider the following model for a firm’s profits as a function of the quantity of adver-

tising:

Π (Ad, As) = Ad · vd + As · vs − Ad · Pd − As · Ps (As/Qs (Ad))

where Ad and As are the quantity of display and search advertising denoted in impressions

and clicks, respectively, and Qs is the total number of searches. v and P refer to the

expected value and price of the advertising, A. In the case of display advertising, Pd would

be denoted in cost per mille (CPM), meaning the price of 1,000 display impressions. For

search advertising, the generalized second-price auction is used to sell search ad placements

on search result pages. In the auction, an advertiser determines a desired click-through rate

(CTR) and bids sufficiently high to achieve the ranking that yields that CTR. Here, we

write Ps is the average price paid to obtain a CTR of As/Qs (Ad). A necessary condition for

the existence of an equilibrium in the auction requires that the price paid is increasing in
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the CTR, P ′s > 0. In order for search and display advertising to be complements, marginal

profits from search advertising must be increasing in the volume of display advertising. We

derive the cross partial derivative of the profit function below.

∂Π

∂As
= vs − Ps

(
As

Qs (Ad)

)
− As · P ′s

(
As

Qs (Ad)

)
· 1

Qs (Ad)

∂2Π (Ad, As)

∂As∂Ad
=

Q′s (Ad)

Qs (Ad)
2

(
(1 + As) · P ′s

(
As

Qs (Ad)

)
+

As
Qs (Ad)

· P ′′s
(

As
Qs (Ad)

))
> 0

A key finding from our empirical work reveals that Q′s > 0: we find that the number of

searches, Qs (Ad), is an increasing function of display advertising, Ad. The other necessary

conditions for search and display advertising to be complements are that P ′s > 0, which

follows from the auction’s structure, and P ′′s > −1+As
As
·Qs (Ad) · P ′s

(
As

Qs(Ad)

)
, which bounds

the degree of concavity for the average price paid as a function of the CTR.

The same derivation used for complements now applies to strategic complements. To

simplify notation, we write the profit function with only the relevant strategic variables:

Πj
(
Aid, A

j
s

)
= Ajs · vjs − Ajs · P j

s

(
Ajs/Q

j
s

(
Aid
))
.

We write i for the display advertiser and j for competitors. As the strategic variables, we

consider the quantity of display advertising, Aid, and the competitor’s search advertising,

Ajs. Again, P j
s is the average price paid per click to achieve the CTR of Ajs/Q

j
s (Aid) and is

increasing for all market participants: P ′s > 0. From the empirical results we know that the

number of competitors’ searches is increasing in the firm’s display advertising, Qj′
s (Aid) > 0.

Given these identical comparative statics, the strategic complementarity of display and search

advertising follows from applying a superscript j to all variables other than Ad, to which one

applies an i superscript:

∂2Πj (Aid, A
j
s)

∂Ajs∂Aid
> 0.
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Appendix B: Ad Awareness Investment and Spillovers

In Grossman and Shapiro (1984), a unit mass of consumers are uniformly distributed

over a line of unit length. Each consumer has a reservation price R for the product but

suffers a transportation cost τ for each unit distance away from his ideal point. There are

two firms in the market and position themselves at opposite ends of the line. A consumer

knows the existence of a firm’s product and its price if he is aware of it.

In the original Grossman and Shapiro (1984) model, consumers are only aware of the firm

if it receives an ad from it, but we depart from this model by assuming that a firm’s ad will

also increase the awareness of the other firm in some consumers. Formally, firm i chooses

the level of advertising by choosing percentage of the unit mass that would receive its ad,

φi. However, every unit of advertising will increase the awareness level of the other firm by

δ. This δ represents the values in the “Competitor/Own” column in Table 3. If there are no

spillovers from advertising, δ = 0. The resulting demand curve for firm i’s product is

Di(Pi, Pi′ , φi, φi′) = (φi + δφi′)

(
(1− (φi′ + δφi)) + (φi′ + δφi)

Pi′ − Pi + t

2t

)
. (2)

In the game, both firms simultaneously choose prices and advertising levels that maximize

their profits, D(Pi, Pi′ , φi, φi′)(Pi−c)− a
2
φ2
i where c is the marginal cost of production, a

2
φ2
i is

the cost of advertising, and a > t(1+δ)2

2
. Because costs, demand, and spillovers are symmetric,

equilibrium prices and advertising levels should also be symmetric. That is φei = φei′ = φe

and P e
i = P e

i′ = P e. The results of the equilibrium profits and prices are

P e = c+ τ
2− (1 + δ)φe

(1 + δ)φe

Πe = τ
(2− (1 + δ)φe)2

2
− a

2
(φe)2

(3)
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where φe is the equilibrium advertising level. This level is

φe =

(2 + δ)−
√

(2 + δ)2 − 4
[
(1+δ)2−2 a

τ

1+δ

]
(1 + δ)2 − 2a

τ

. (4)

In our empirical analysis, we found δ to be less than one for spillovers to most competitive

brands, and as a result, we plot the equilibrium advertising, prices, and profits for δ ∈

[0, 1] respectively in Figure 6, Figure 7, and Figure 8. We find advertising levels fall as

spillovers increase because for each unit advertising, advertising spillovers create more price

competition. As for the equilibrium price, spillovers decrease it initially because the effect

from the increase of price competition outweigh the effect from a decrease in advertisement,

but eventually, the effect from the decrease in advertisement will dominate and cause the

equilibrium price to rise.

Appendix C: Tables and Figures

Figure 1: Snapshot of the Frontpage
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Table 1: Creatives for Ad Campaigns

Date of Ad Split Target Ad Control Ad

11 January 2011

10 February 2011

29 June 2011
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Table 2: Summary Statistics
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Figure 2: Distribution of the Total Number of Visits
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Figure 3: Distribution of the Total Number of Exposures to the Target Ad
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Figure 4: Distribution of the Total Number of Exposures to the Target Ad for Users Who
Only Visited the Front Page 10 times
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Figure 5: The Relationship between CPC and CTR on a Search Result Page
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Table 3: Main Results of the Effects of Advertising on Search
Control Search Lift from Advertising

Searches Estimate OLS T-stat Cluster T-stat Estimate OLS T-stat Cluster T-stat
Percentage

Lift
Competitor/

Own

Samsung Galaxy Tab Advertising Campaign

Samsung Galaxy Tab 958 19.78 20.57 424 6.20 6.32 44.3% 1.00

All Competitors 16,662 89.87 82.42 994 3.79 3.81 6.0% 2.34

Apple Ipad 9,851 68.64 63.21 857 4.23 4.25 8.7% 2.02

Motorola Xoom 663 17.23 16.74 151 2.79 2.79 22.8% 0.36

Blackberry Playbook 317 11.92 11.34 71 1.89 1.90 22.4% 0.17

Viewsonic 18 2.55 3.00 14 1.39 1.39 77.2% 0.03

Acura Advertising Campaign

Acura 3,539 38.12 38.34 1,555 11.84 11.78 43.9% 1.00

All Competitors 401,927 445.80 389.84 12,035 9.43 9.44 3.0% 7.74

Volkswagen 5,840 52.12 48.24 894 5.64 5.62 15.3% 0.58

Hyundai 5,399 50.05 46.94 853 5.59 5.55 15.8% 0.55

Lexus 3,907 42.54 39.37 631 4.86 4.85 16.2% 0.41

Volvo 2,183 31.39 29.31 478 4.86 4.75 21.9% 0.31

Progressive Auto Insurance Advertising Campaign

Progressive 4,104 42.41 42.76 1,135 8.30 8.34 27.6% 1.00

All Competitors 23,035 106.84 99.34 327 1.07 1.08 1.4% 0.29

Allstate 2,968 38.09 36.52 124 1.12 1.13 4.2% 0.11

USAA 7,870 62.30 56.97 187 1.05 1.06 2.4% 0.17

Safeco 214 10.01 9.73 29 0.96 0.97 13.6% 0.03

Nationwide Insurance 880 20.64 19.81 54 0.90 0.91 6.2% 0.05

Table 4: Robustness Checks Limiting the Sample to the First Impressions
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Figure 6: Magnitude of Spillovers vs. Equilibrium Advertising Levels
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Figure 7: Magnitude of Spillovers vs. Equilibrium Prices
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Figure 8: Magnitude of Spillovers vs. Equilibrium Profits
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